Answer:
a. The refractive index ranges from 1.5 - 1.56
b. 18.7° for violet light and 19.5° for red light.
c. 33.7° for violet light and 35.3° for red light.
Explanation:
a. The refractive index of an object is the ratio of the speed of light in a vacuum and the speed of light in the object.
Mathematically,
![n = \frac{c}{v}](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7Bc%7D%7Bv%7D)
The speed of violet light in the object is
.
The speed of red light in the object is ![2 * 10^8 m/s](https://tex.z-dn.net/?f=2%20%2A%2010%5E8%20m%2Fs)
Hence, the refractive index for violet light is:
![n = \frac{3 * 10^8 }{1.9 * 10^8} \\\\n = 1.56](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B3%20%2A%2010%5E8%20%7D%7B1.9%20%2A%2010%5E8%7D%20%5C%5C%5C%5Cn%20%3D%201.56)
and for red light, it is:
![n = \frac{3 * 10^8 }{2 * 10^8} \\\\n = 1.5](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B3%20%2A%2010%5E8%20%7D%7B2%20%2A%2010%5E8%7D%20%5C%5C%5C%5Cn%20%3D%201.5)
Hence, the refractive index ranges from 1.5 - 1.56.
b. The refractive index is also the ratio of the sine of the angle of incidence to the sine of the angle of refraction.
![n = \frac{sin(i)}{sin(r)}](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7Bsin%28i%29%7D%7Bsin%28r%29%7D)
The angle of incidence is 30°.
The angle of refraction for violet light will be:
![1.56 = \frac{sin(30)}{sin(r)}\\ \\sin(r) = \frac{sin(30)}{1.56} = \frac{0.5}{1.56} \\\\sin(r) = 0.3205\\\\r = 18.7^o](https://tex.z-dn.net/?f=1.56%20%3D%20%5Cfrac%7Bsin%2830%29%7D%7Bsin%28r%29%7D%5C%5C%20%5C%5Csin%28r%29%20%3D%20%5Cfrac%7Bsin%2830%29%7D%7B1.56%7D%20%20%3D%20%5Cfrac%7B0.5%7D%7B1.56%7D%20%5C%5C%5C%5Csin%28r%29%20%3D%200.3205%5C%5C%5C%5Cr%20%3D%2018.7%5Eo)
And the angle of refraction for red light will be:
![1.5 = \frac{sin(30)}{sin(r)}\\ \\sin(r) = \frac{sin(30)}{1.5} = \frac{0.5}{1.5} \\\\sin(r) = 0.3333\\\\r = 19.5^o](https://tex.z-dn.net/?f=1.5%20%3D%20%5Cfrac%7Bsin%2830%29%7D%7Bsin%28r%29%7D%5C%5C%20%5C%5Csin%28r%29%20%3D%20%5Cfrac%7Bsin%2830%29%7D%7B1.5%7D%20%20%3D%20%5Cfrac%7B0.5%7D%7B1.5%7D%20%5C%5C%5C%5Csin%28r%29%20%3D%200.3333%5C%5C%5C%5Cr%20%3D%2019.5%5Eo)
The angle of refraction for red light is larger than that of violet light when the angle of incidence is 30°.
c. The angle of incidence is 60°.
The angle of refraction for violet light will be:
![1.56 = \frac{sin(60)}{sin(r)}\\ \\sin(r) = \frac{sin(60)}{1.56} = \frac{0.8660}{1.56} \\\\sin(r) = 0.5551\\\\r = 33.7^o](https://tex.z-dn.net/?f=1.56%20%3D%20%5Cfrac%7Bsin%2860%29%7D%7Bsin%28r%29%7D%5C%5C%20%5C%5Csin%28r%29%20%3D%20%5Cfrac%7Bsin%2860%29%7D%7B1.56%7D%20%20%3D%20%5Cfrac%7B0.8660%7D%7B1.56%7D%20%5C%5C%5C%5Csin%28r%29%20%3D%200.5551%5C%5C%5C%5Cr%20%3D%2033.7%5Eo)
And the angle of refraction for red light will be:
![1.5 = \frac{sin(60)}{sin(r)}\\ \\sin(r) = \frac{sin(60)}{1.5} = \frac{0.8660}{1.5} \\\\sin(r) = 0.5773\\\\r = 35.3^o](https://tex.z-dn.net/?f=1.5%20%3D%20%5Cfrac%7Bsin%2860%29%7D%7Bsin%28r%29%7D%5C%5C%20%5C%5Csin%28r%29%20%3D%20%5Cfrac%7Bsin%2860%29%7D%7B1.5%7D%20%20%3D%20%5Cfrac%7B0.8660%7D%7B1.5%7D%20%5C%5C%5C%5Csin%28r%29%20%3D%200.5773%5C%5C%5C%5Cr%20%3D%2035.3%5Eo)
The angle of refraction for red light is still larger than that of violet light when the angle of incidence is 60°.