1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
3 years ago
15

The most common type of lighting unit utilized in street lighting is:

Physics
1 answer:
Juli2301 [7.4K]3 years ago
3 0
<span>Option C. The sodium vapor lamp is a gas discharge lamp that uses sodium vapor for the production of light. It is an efficient lighting source that provides lumens per watt and produces bright yellow. It has a monochromatic light that makes its applications are reduced. It is used in street lighting, streets, highways, etc.</span>
You might be interested in
A yoyo with a mass of m = 150 g is released from rest as shown in the figure.
avanturin [10]

(1) The linear acceleration of the yoyo is 3.21 m/s².

(2) The angular acceleration of the yoyo is 80.25 rad/s²

(3) The  weight of the yoyo is 1.47 N

(4) The tension in the rope is 1.47 N.

(5) The angular speed of the yoyo is 71.385 rad/s.

<h3> Linear acceleration of the yoyo</h3>

The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.

∑τ = Iα

rT - Rf = Iα

where;

  • I is moment of inertia
  • α is angular acceleration
  • T is tension in the rope
  • r is inner radius
  • R is outer radius
  • f is frictional force

rT - Rf = Iα  ----- (1)

T - f = Ma  -------- (2)

a = Rα

where;

  • a is the linear acceleration of the yoyo

Torque equation for frictional force;

f = (\frac{r}{R} T) - (\frac{I}{R^2} )a

solve (1) and (2)

a = \frac{TR(R - r)}{I + MR^2}

since the yoyo is pulled in vertical direction, T = mg a = \frac{mgR(R - r)}{I + MR^2} \\\\a = \frac{(0.15\times 9.8 \times 0.04)(0.04 - 0.0214)}{1.01 \times 10^{-4} \ + \ (0.15 \times 0.04^2)} \\\\a = 3.21 \ m/s^2

<h3>Angular acceleration of the yoyo</h3>

α = a/R

α = 3.21/0.04

α = 80.25 rad/s²

<h3>Weight of the yoyo</h3>

W = mg

W = 0.15 x 9.8 = 1.47 N

<h3>Tension in the rope </h3>

T = mg = 1.47 N

<h3>Angular speed of the yoyo </h3>

v² = u² + 2as

v² = 0 + 2(3.21)(1.27)

v² = 8.1534

v = √8.1534

v = 2.855 m/s

ω = v/R

ω = 2.855/0.04

ω = 71.385 rad/s

Learn more about angular speed here: brainly.com/question/6860269

#SPJ1

3 0
1 year ago
How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
krek1111 [17]

the answer is -9,697

4 0
2 years ago
Read 2 more answers
The data table depicts an object moving with changing speed.<br><br> True<br> False
Nimfa-mama [501]
The answer is true. The table does show an object moving with changing speed.
6 0
3 years ago
Read 2 more answers
Một vôn kế đang đo hiệu điện thế ở thang đo có giá trị mỗi độ chia là 0,1 V. Nếu kim chỉ thị nằm giữa vạch 5,5 V và 5,6 V thì đọ
kakasveta [241]

Answer:

5.6V nha bạn

Explanation:

5 0
2 years ago
Find its moment of inertia about an axis perpendicular to its plane and passing through the midpoint of the line connecting its
antoniya [11.8K]

A) Moment of inertia about an axis passing through the point where the two segments meet : $I_A=\frac{1}{12} M L^2$

B) Moment of inertia passing through the point where the midpoint of the line connects to its two ends: $I x=\frac{1}{3} M L^2$

What is Moment of inertia?

The term "moment of inertia" refers to a physical quantity that quantifies a body's resistance to having its speed of rotation along an axis changed by the application of a torque (turning force). The axis might be internal or exterior, fixed or not.

A) The moment of inertia about an axis passing through the point where the two segments meet is $I_A=\frac{1}{12} M L^2$given that the rod is bent at the center and distance from all the points to the axis remains the same, the moment of inertia about the center will remain the same.

B) Determine the moment of inertia about an axis passing through the point midpoint of the line which connects the two ends

First step: determine the distance between the ends ( d )

After applying Pythagoras theorem$\mathrm{d}=\frac{\sqrt{2}}{2} L$

Next step : determine distance between the two axis $(\mathrm{x})$

After applying Pythagoras theorem

\mathrm{x}=\frac{\sqrt{2}}{4} L$$

Final step : Calculate the value of $\mathrm{I}_{\mathrm{x}}$

applying Parallel Axis Theorem

$$I_x=I_8+M x^2$$

$$\begin{aligned}& =\frac{1}{12} M L^2+\frac{1}{4} M L^2 \\& \therefore \quad I x=\frac{1}{3} M L^2 \\&\end{aligned}$$

Hence we can conclude that Moment of inertia about an axis passing through the point where the two segments meet: $I_A=\frac{1}{12} M L^2$, Moment of inertia passing through the point where the midpoint of the line connects its two ends: $I x=\frac{1}{3} M L^2$

To learn more about moment of inertia visit:brainly.com/question/15246709

#SPJ4

5 0
1 year ago
Other questions:
  • Tiles are 6 mm long how many can you fit into a space 54 cm long
    6·1 answer
  • when you hold a warm bowl of soup the temperature of the palms of your hands increases this is an example of
    7·1 answer
  • A scientist wants to calculate the kinetic energy of a cheetah as it chases down its prey. What does the scientist need to measu
    5·2 answers
  • A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the net
    11·1 answer
  • The block brake consists of a pin-connected lever and friction block at B. The coefficient of static friction between the wheel
    10·2 answers
  • A diver springs upward from a board that is 3.90 m above the water. At the instant she contacts the water her speed is 13.2 m/s
    11·1 answer
  • Please help me answer this it is due by Sunday night.
    12·1 answer
  • Why is an important to come up with a plan for how are you to respond to negative peer pressure before the situation happens
    11·1 answer
  • What is the displacement of a car traveling 14 km North on I985 then 20 km South on I985?
    8·1 answer
  • A person is trying to ride a bike all the way round the inside of a pipe for a stunt in a film. The filmmaker wants to know what
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!