The general equation for radioactive decay is;
N = N₀e^(-λt)
x - decay constant (λ) - rate of decay
t- time
N - amount remaining after t days , since we are calculating the half life, amount of time it takes for the substance to to be half its original value, its N₀/2
N₀ - amount initially present
substituting the values
N₀/2 = N₀e^(-0.081t)
0.5 = e^(-0.081t)
ln (0.5) = -0.081t
-0.693 = -0.081t
t = 0.693 / 0.081
= 8.55
half life of substance is 8.55 days
The freezing point of water is 0° C. The Celsius (centigrade) scale is based off of water, with the freezing point at 0° and the boiling point at 100°. (Google will probably tell you this in 10 seconds, then you wouldn't have had to wait 7 hours!)
Answer:
Propane gas plus oxygen gas produces water and carbon dioxide.
Explanation:
This is the initial chemical equation: C3H8 + O2 = CO2 + H2O
This is the balanced chemical equation: C3H8 + 5 O2 = 3 CO2 + 4 H2O
Answer:
116.5 g of SO₂ are formed
Explanation:
The reaction is:
S₈(g) + 8O₂(g) → 8SO₂ (g)
Let's identify the moles of sulfur vapor, by the Ideal Gases Law
We convert the 921.4°C to Absolute T° → 921.4°C + 273 = 1194.4 K
5.87 atm . 3.8L = n . 0.082 L.atm/mol.K . 1194.4K
(5.87 atm . 3.8L) / (0.082 L.atm/mol.K . 1194.4K) = n → 0.228 moles of S₈
Ratio is 1:8, 1 mol of sulfur vapor can produce 8 moles of dioxide
Then, 0.228 moles of S₈ must produce (0.228 . 8) /1 = 1.82 moles
We convert the moles to g → 1.82 moles . 64.06 g /1mol = 116.5 g
Periodic Trend:
The Atomic radius of atoms generally decreases from left to right across a period
Group Trend:
The atomic radius of atoms generally increases from top to bottom within a group. As atomic number increases down a group, there is a increase in the positive nuclear charge, however the co-occurring increase in the number of orbitals wins out, increasing the atomic radius down a group in the periodic table
Answer :
The Atom with the greatest atomic radius is chlorine. Fluorine can be ruled out because it is in the same period as oxygen and further to the right down the period. Chlorine has the largest atomic size because it is farthest down the group of any of the above elements listed.