Answer:
Molarity = 2.3 M
Explanation:
Molarity can be calculated using the following rule:
Molarity = number of moles of solute / volume of solution
1- getting the number of moles:
We are given that:
mass of solute = 105.96 grams
From the periodic table:
atomic mass of carbon = 12 grams
atomic mass of hydrogen = 1 gram
atomic mass of oxygen = 16 grams
Therefore:
molar mass of C2H6O = 2(12) + 6(1) + 16 = 46 grams
Now, we can get the number of moles as follows:
number of moles = mass / molar mass = 105.96 / 46 = 2.3 moles
2- The volume of solution is given = 1 liter
3- getting the molarity:
molarity = number of moles of solute / volume of solution
molarity = 2.3 / 1
molarity = 2.3 M
Hope this helps :)
<span>Yes. If you put solutions containing the same concentration table salt, glucose and starch in different bags and place the bags in water (i.e., 0M) solution, then the bag with salt will contain more water after 15 minutes than the bag with glucose, which will contain more than the bag with starch.</span>
Answer:
Tests for gases
Hydrogen, oxygen, carbon dioxide, ammonia and chlorine can be identified using different tests.
Hydrogen. A lighted wooden splint makes a popping sound in a test tube of hydrogen.
Oxygen. A glowing wooden splint relights in a test tube of oxygen.
hope it will help
Answer:
82.08 %
Explanation:
- <em>The percent yield of the reaction = [(actual yield)/(calculated yield)] x 100.
</em>
Actual yield = 26.80 kg.
- <em><u>To get the calculated yield:
</u></em>
- The balanced equation of reacting N2 with H2 to produce NH3 is:
N₂ + 3H₂ → 2NH₃
- It is clear that 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- N₂ is present in excess and H₂ is the limiting reactant.
- We need to convert the mass of H₂ added (5.79 kg) to moles using the relation:
n = mass /molar mass = (5790 g) / (2.01 g/mol) = 2880.6 mol.
- We can get the no. of moles of NH₃ produced.
<u><em>Using cross multiplication:
</em></u>
3.0 mole of H₂ produce → 2.0 moles off NH₃, from the stichiometry.
2880.6 mol of H₂ produces → ??? moles of NH₃.
- The no. of moles of NH₃ produced = (2880.6 mol)(2.0 mol) / (3.0 mol) = 1920.4 mol.
- We can know get the calculated yield of NH₃ = no. of moles x molar mass = (1920.4 mol) (17.00 g/mol) = 32646.76 g ≅ 32.65 kg.
∴ <em>The percent yield of the reaction = [(actual yield)/(calculated yield)] x 100 = </em>[(26.8 kg) / (32.65 kg)] x 100 <em>= 82.08 %.</em>
Quema de calorías que son parte de la energía interna de un cuerpo