Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation
QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
Because the temperature remains constant, we can apply Boyle's Law which states that
pV = constant
where
p = pressure
V = volume
Define the two states of the gas.
State 1
Pressure = p₁
Volume = 1000 ml
State 2
Pressure = p₂
Volume = 500 ml
Apply Boyle's law.
1000p₁ = 500p₂
2 = p₂/p₁
By halving the volume, the pressure doubles.
Answer:
The pressure increases by a factor of 2.
Answer:
Both, potential energy and kinetic energy depends on mass. The higher the mass, the higher the energy. However, the difference is that potential energy depends on vertical height whereas kinetic energy depends on the velocity.
Explanation:
From the formula we can see that;
Potential Energy = mass* gravitational acceleration *vertical height.
Kinetic Energy = 0.5 * mass * (velocity)^2