<span>The electron configuration that represents a violation of the pauli exclusion principle is:
</span><span>1s: ↑↓
2s: ↑↑
2p: ↑</span>
The Pauli exclusion principle refers to the quantum mechanical rule which expresses that at least two indistinguishable fermions (the particles with half-integer spin) can't involve a similar quantum state inside a quantum framework all the while.
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.
This question includes four answer choices:
A. definite volume, highest molecular motion, highest kinetic energy
B. indefinite volume, least molecular motion, highest kinetic energy
C. definite volume, least molecular motion, lowest kinetic energy
D. definite volume, no molecular motion, lowest kinetic energy
Solids do not have the highest molecular motion (on the contrary they have the least molecular motion), so you can discard option A. Solids have a definite volume and the highest kinetic energy (given that they have the least molecular motion), so you discard option C. Molecules always have a vibrational motion, so you discard option D. Option C, have only characteristics that correctly describes a solid: definite volume, least molecular motion, lowest kinetic energy. Therefore, the answer is the option C.
<span /><span>
</span>
The P-H bond is polar and the molecule is asymmetric.
Non-polar bonds cannot produce polar molecules and symmetric bonds result in even distribution of charge, so no net charge is observed.
The correct answer is industrial smog. This type of smog exists in coal power plants which creates smoke and sulfur dioxide which may mix with fog creating a thick blanket of haze. Sulfur dioxide is one primary component of an industrial smog.