True conditions
Efficiency of Heat Exchanger are as below:
the heat exchange process between two fluids with different temperatures using solid walls occurs in various engineering applications. The tool to achieve this exchange is a heat exchanger. Some applications like air conditioning, power generation, waste heat recovery, and chemical processing use this device.
The basis of the work of a heat exchanger is that the hot fluid enters the heat exchanger at temperature T1 and its heat capacity is Chot. Also, the cold fluid with the heat capacity of Ccold enters temperature t1; in the meantime, the hot fluid loses its heat, and its temperature drops to T2. It delivers heat to the cold fluid to increase its temperature to t2 and leave the heat exchanger at this temperature.
To learn more about Heat Exchanger
brainly.com/question/22595817
#SPJ4
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
the answer is A: voluntary reflexes
Explanation:
because Alcohol poisoning can effect the brain which voluntary is something in the brain
<span>11.823 cm
There is a slight ambiguity with this question in that I don't know if the measurements are from the surface of the ball, or the center of the ball. I will take this question literally and as such the point light source will be 124 cm from the wall.
The key thing to remember is that ball won't be showing an effective diameter of 4 cm to the light source. Instead the shadow line is a tangent to the ball's surface. There is a right triangle where the hypotenuse is the distance from the center of the ball to the light source (42 cm), one leg of the triangle is the radius (2cm). That right triangle will define a chord that will be the effective diameter of the disk casting the shadow. The cosine of the half angle of the chord will be 2/42 = 1/21. The sine of the half angle then becomes sqrt(1-(1/21)^2) = sqrt(440/441) = 2sqrt(110) = 0.99886557. Now multiply that sine by 4 (radius of ball multiplied by 2 since it's the half angle and we want the full side of the chord) and we get an effective diameter of 3.995462279 cm.
Now we need to calculate the effective distance that circle is from the wall. It will be slightly larger than 82 cm. The exact value will be 82 + cos(half angle) * radius. So
82 + 1/21 * 2 = 82 + 2/21 = 82.0952381
Now we have the following dimensions with a circle replacing the ball in the original problem.
Distance from wall to effective circle = 82.0952381 cm
Distance from effective circle to point source = 124 - 82.0952381 = 41.9047619 cm
Effective diameter of circle = 3.995462279 cm
And because the geometry makes similar triangles, the following ratio applies.
3.995462279/41.9047619 = X/124
Now solve for X
3.995462279/41.9047619 = X/124
124*3.995462279/41.9047619 = X
495.4373226/41.9047619 = X
11.82293611 = X
The shadow cast on the wall will be a circle with a diameter of 11.823 cm</span>