Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong
Gravity holds the system together
Answer:
a. when the acceleration of the objects become negative
Answer:
5 no
Explanation:
actually the 4kg lying on table has no influence
it slides towards 4kg weight hung
as it has excess 2kg force
force=miu × m ×g
Answer:
A. 1.172 metres
B. 6.82 Ns
C. 4.796 m/s
Explanation:
The total initial momentum is gotten by multiplying the mass and initial velocity of the both bodies.
The 1.40 kg block is at rest so velocity is zero and has no momentum.
The bullet of mass 22 g = 0.022 kg with velocity of 310 m/s
Momentum = 310*0.022
Momentum = 6.82 Ns.
If the bullet gets embedded they will both have common velocity v
6.82 = (0.022+1.40)v
6.82 = 1.422v
V = 6.82/1.422
V = 4.796 m/s
How high the block will rise after the bullet is embedded is given by
H = (U²Sin²tita)/2g
Where tita is 90°
H = (4.796² * sin²(90))/(2*9.81)
H =( 23.001616*1)/19.62
H = 1.172 metres