Answer:
1).....for the specific heat capacity(c) of water is 4200kg/J°C..
....guven mass(m)=320g(0.32kg)
...change in temperature(ΔT) =35°C
from the formula
Q=mcΔT
Q=0.32Kg x 4200kg/J°C x 35°C
Q=47,040Joules
The correct answer is D
Explanation:
Wave frequency is mainly determined by the number of waves that pass through a specific point. In a diagram, this can be found by analyzing the number of crests (top of the wave) and the space between them. For example, wave B is the one with the lowest frequency because there is only one crest and this shows only one wave passing at a specific point. On the opposite, wave D is the one with the highest frequency because this shows multiple crests and this indicates the frequency is high or that many waves pass through a specific point in a short time.
Answer:
2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O3: 2 moles
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
You can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe reacts with 3 moles of O₂, how much moles of Fe will be needed if 4.7 moles of O₂ react?

moles of O₂= 6.27
But 6.27 moles of Fe are not available, 5.4 moles are available. Since you have less moles than you need to react with 4.7 moles of O₂, iron Fe will be the limiting reagent.
So you can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, how many moles of Fe₂O₃ will be produced if 5.4 moles of Fe react?

moles of Fe₂O₃= 2.7 moles
Then:
<u><em>2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.</em></u>
The correct response I believe is D. The reaction rate increases because the probability of collisions increases as there are more Zn atoms to react.