Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so, >
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.
Answer:
240 Newtons
Explanatiohn:
f = m × a
f = 120 × 2
f = 240 Newtons
<h3>The force is 240 Newtons</h3>