Answer:
.
Explanation:
Intensity
of the electromagnetic radiation is given by

where
is the distance from the EM source (the center of the sun, in our case), and
is the power output of the sun and it has the value

Since the radius of the sun in meters is
, the intensity
of the electromagnetic radiation at the surface of the sun is

The intensity of the electromagnetic radiation at the surface of the sun is
.
Answer:
1.) Micrometres screw gauge
2.) Tape rule.
Explanation:
Given that the diameter and the length of a thin wire, approximately 1m in length, are measured as accurately as possible.
what are the best instruments to use ?
To measure the diameter of a thin wire, the best instrument to use is known as micrometres screw gauge.
And to measure the length of a thin wire up to 1 m, the measuring device can be tape rule or long metre rule.
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
A. A car comes equipped with side airbags. I don't know how I'm supposed to show work but that's the answer
Answer:
life (N) of the specimen is 117000 cycles
Explanation:
given data
ultimate strength Su = 120 kpsi
stress amplitude σa = 70 kpsi
solution
we first calculate the endurance limit of specimen Se i.e
Se = 0.5× Su .............1
Se = 0.5 × 120
Se = 60 kpsi
and we know strength of friction f = 0.82
and we take endurance limit Se is = 60 kpsi
so here coefficient value (a) will be
a =
......................1
put here value and we get
a =
a = 161.4 kpsi
so coefficient value (b) will be
b =
b =
b = −0.0716
so here number of cycle N will be
N = 
put here value and we get
N = 
N = 117000
so life (N) of the specimen is 117000 cycles