The standard model of particle physics classifies all known particles and documents three of the fundamental forces. A neutrino is an almost massless sub-atomic particle with no charge that only interacts with matter very weakly. Neutrinos are classified as fermions which means they have half-integer intrinsic spin.
An example of a negative incentive for producers is the
sharp increase in production costs. Producers are the one who manage the production
costs and even the production budget. Anything that relates the production
department is entitled to the management of production producers.
There is what we called positive and negative incentives and
both of these can affect consumers and producers. Positive incentives are those
situations which will give a certain outcome that will benefit the producers,
for example, during the peak season there will be a high demand of products, and
this gives the chance of producers to demand a higher price from the consumers,
in this situation, there will be a big chance of increase sales. A sharp increase in production costs is a
loss for the producers. If there will be
an increase in production costs, the budget will be greatly affective and even
though it is not a peak season, there’s a big chance also to increase prices
which we know, consumers are not fond of.
Answer:
The time taken is 
Explanation:
From the question we are told that
The length of steel the wire is 
The length of the copper wire is 
The diameter of the wire is 
The tension is 
The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

Where
is the time taken to transverse the steel wire which is mathematically represented as
![t_s = l_1 * [ \sqrt{ \frac{\rho * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%20l_1%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_s = 31 * [ \sqrt{ \frac{8920 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%2031%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B8920%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

And
is the time taken to transverse the copper wire which is mathematically represented as
![t_c = l_2 * [ \sqrt{ \frac{\rho_c * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%20l_2%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho_c%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_c = 17 * [ \sqrt{ \frac{7860 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%2017%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B7860%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

So



Answer:
Explanation:
T = 2π
(T / 2π)² = L/g
g = 4π²L/T²
g = 4π²(0.75000)/(1.7357)²
g = 9.82814766...
g = 9.8281 m/s²
That thing is used as a lever.