Answer:
quantum mechanical model: A model of the atom that derives from the Schrödinger wave equation and deals with probabilities. wave function: Give only the probability of finding an electron at a given point around the nucleus. The quantum mechanical model of the atom also uses complex shapes of orbitals (sometimes called electron clouds), volumes of space in which there is likely to be an electron. So, this model is based on probability rather than certainty.
Answer:
4- A material that transfers heat energy more easily than another material will experience a greater rate of thermal energy loss than an object that does not transfer heat energy easily.
Explanation:
Thermal energy loss has to do with loss of heat energy by a body to another body or its environment. The aim of the process is usually the attainment of thermal equilibrium between the body and its environment.
On a cold day, a material that transfers thermal energy more easily will loose thermal energy faster than an object that does not transfer thermal energy. The rate of heat transfer of a body determines its rate of loss of thermal energy.
Answer:

Explanation:
Hello,
In this case, we can analyze the colligative property of solutions - freezing point depression - for the formed solution when ethylene glycol mixes with water. Thus, since water freezes at 0 °C, we can compute the freezing point of the solution as shown below:

Whereas the van't Hoff factor for this solute is 1 as it is nonionizing and the molality is:

Thus, we obtain:

Best regards.
1) Reaction: 3Mg + N₂ → Mg₃N₂.
m(Mg) = 0,225 g
n(Mg) = 0,225 g ÷ 24,3 g/mol = 0,009 mol.
n(Mg) : n(N₂) = 3 : 1
n₁(N₂) = 0,003 mol.
n₂(N₂) = 0,5331 ÷ 28 = 0,019 mol.
n₃(N₂) = 0,019 mol - 0,003 mol = 0,016, m(N₂) = 0,016mol·28g/mol=0,4467g.
or simpler: m(N₂) = 0,225 g + 0,5331 - 0,3114 g = 0,4467 g.
2) Answer is: 6 <span>of fluorine atoms are combined with one uranium atom.
</span>m(U) = 209 g.
m(F) = 100 g.
n(U) = m(U) ÷ M(U)
n(U) = 209 g ÷ 238 g/mol.
n(U) = 0,878 mol.
n(F) = m(F) ÷ M(F)
n(F) = 5,263 mol
n(U) : n(F) = 0,878 mol : 5,263 mol /:0,878.
n(U) : n(F) = 1 : 6.
n - amount of substance