The electron group arrangement of PH₃ is tetrahedral. The molecular shape is a Trigonal pyramid, and the bond angle is 93°.
<h3>What is the bond angle?</h3>
The angle between the atoms in a compound is known as the bond angle. The degree of the binding angle is specified. There is also the bond length. It is the separation between the two atoms' nuclei.
The bond angle between the atoms of phosphine is 93°. It has one lone pair. The central atom is covered with 4 atoms.
Thus, the electron-group arrangement of phosphine is tetrahedral. The molecular geometry or shape is a trigonal pyramid. The bond angle is 93°.
To learn more about bond angles, refer to the link:
brainly.com/question/1851495
#SPJ4
Answer:
We need 420 cal of heat
Explanation:
Step 1: Data given
Mass of the aluminium = 200.0 grams
Temperature rises with 10.0 °C
Specific heat of aluminium = 0.21 cal/g°C
Step 2: Calculate the amount of heat required
Q =m * c* ΔT
⇒with Q = the amount of heat required= TO BE DETERMINED
⇒with m = the mass of aluminium = 200.0 grams
⇒with c = the specific heat of aluminium = 0.21 cal/g°C
⇒with ΔT = the change of temperature = 10.0°C
Q = 200.0 grams * 0.21 cal/g°C * 10.0 °C
Q = 420 cal
We need 420 cal of heat (option 2 is correct)
Answer is: pH of a buffer is 4.64.
ck(CH₃COOH) = 0.45 M.
cs(CH₃COONa) = 0.35 M.
Ka = 1.8·10⁻⁵.
<span>pKa = -logKa.
</span>pKa = -log(1.8·10⁻⁵) = 4.75.
<span>Henderson–Hasselbalch equation: pH = pKa + log(cs/ck).
</span>pH = 4.75 + log(0.35M/0.45M).
pH = 4.75 - 0.11.
pH = 4.64.
pH (potential of hydrogen) is a numeric
scale used to specify the acidity or basicity an aqueous solution.
Answer:
the three point problem is well known as the in structial
Explanation: