Answer: 
Explanation:
We can solve this with the Law of Universal Gravitation and knowing the acceleration due gravity
of an object above the surface of the planet decreases with the distance (height) of this object from the center of the planet.
Well, according to the law of universal gravitation:
(1)
Where:
is the module of the force exerted between both bodies
is the gravitational constant
is the mass of the Earth
are the mass of each communications satellite
is the distance between the center of the Earth and the satellite
is the radius of the Earth
is the height of the satellite, measured from the Earth's surface
On the other hand, we know according to <u>Newton's 2nd law of motion:</u>
(2)
Combining (1) and (2):
(3)
Isolating
:
(4)
Remembering
:
(5)
Finally:
It will act upon a buoyant force on the magnitude of which is equal to weight of the fluid
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ The correct answer choice is B) is multicellular. When something is multicellular, it consists of two or more cells. When something is unicellular, it consists of only one cell and in this case we have 5 million red blood cells so that wouldn't make sense.
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer:
h = 2.5 m
Explanation:
Given that,
Mass of a ball, m = 1.5 kg
Initial velocity of the ball, u = 7 m/s
We need to find the maximum height reached by the ball. Let it is be h. Using the conservation of energy to find it such that,

Put all the values,

So, it will reach to a height of 2.5 m.
1 mile = 1.609 km
(135,000 km) x (1 mile / 1.609 km) = 83,885.1 miles