Answer:
Average speed will be 48.23 km/h
Explanation:
Let the distance up to hill is = d km
Speed when car goes to hill = 38 km/h
So time required 
Speed when car return from hill = 66 km/h
So time required to return fro hill 
Total time 
Total distance = d+d =2d
So average speed
A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>