lol what is this question
Answer:
Explanation:
Force between two charges of q₁ and q₂ at distance d is given by the expression
F = k q₁ q₂ / d₂
Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm
k = 1/ 4π x 8.85 x 10⁻¹²
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 35969.4 x 10⁻³ N .
force between charge q₂ = 34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 82729.6 x 10⁻³ N
Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)
Total force = 118699 x 10⁻³
= 118.7 N.
Given that,
Mass of each washer = 4.9 g
We need to calculate the mass of two washers in kg
Using conversion of unit
Mass of each washer 
So, Mass of two washers is

Put the value of m


If 4 washer are attached to the spring
We need to calculate the applied force on the car
Using formula of force

Put the value into the formula


Hence, (i), The mass of two washers is 0.0098 kg.
(ii). The applied force on the car is 0.192 N.
A concave mirror is curved inward in the middle, more
like a cave. Because the mirror is curved inward, the angle of the light
surface can be focused similar to that of the camera. They can form real images
that are projected out in front of the mirror at the place where light focuses.
When the object is located at the center of the curvature the image formed will
also be at the curvature. The image will be inverted and the magnification
value is equal to 1 which will become a real image because the ray of light
converges at the location of the formed image.
There are many ways to solve this but I prefer to use the energy method. Calculate the potential energy using the point then from Potential Energy convert to Kinetic Energy at each points.
PE = KE
From the given points (h1 = 45, h2 = 16, h<span>3 </span>= 26)
Let’s use the formula:
v2= sqrt[2*Gravity*h1] where the gravity is equal to 9.81m/s2
v3= sqrt[2*Gravity*(h1 - h3 )] where the gravity is equal to 9.81m/s2
v4= sqrt[2*Gravity*(h1 – h2)] where the gravity is equal to 9.81m/s2
Solve for v2
v2= sqrt[2*Gravity*h1]
= √2*9.81m/s2*45m
v2= 29.71m/s
v3= sqrt[2*Gravity*(h1 - h3 )
=√2*9.81m/s2*(45-26)
=√2*9.81m/s2*19
v3=19.31m/s
v4= sqrt[2*Gravity*(h1 – h2)]
=√2*9.81m/s2*(45-16)
=√2*9.81m/s2*(29)
v4=23.85m/s