Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:
8.9 g/cm^3
Explanation:
density = mass/volume
volume = length * width * height
volume = (8.4 cm)(5.5 cm)(4.6 cm)
volume = 212.52 cm^3
mass = 1896 g
density = (1896 g)/(212.52 cm^3)
density = 8.9 g/cm^3
Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
Answer:
v = 79.2 m/s
Solution:
As per the question:
Mass of the object, m = 250 g = 0.250 kg
Angle, 
Coefficient of kinetic friction, 
Mass attached to the string, m = 0.200 kg
Distance, d = 30 cm = 0.03 m
Now,
The tension in the string is given by:
(1)
Also
T = m(g + a)
Thus eqn (1) can be written as:





Now, the speed is given by the third eqn of motion with initial velocity being zero:

where
u = initial velocity = 0
Thus

