Answer:
<h2>0.069 N, in the X direction</h2>
Explanation:
According to Flemming's left hand rule, it sates that if the first three fingers of the left hand are held mutually at right angles to one another, the fore finger will point in the direction of magnetic field, the middle finger will point in direction of current, while the thumb will point to the direction of force.
Mathematically the law is stated as
F= BIL
given data
Magnetic field B= 0.43T
Current I= 4.9 A
length of conductor L= 3.3cm to meter , 3.3/100= 0.033 m
Applying the formula the force is calculated as
F= 0.43*4.9* 0.033= 0.069 N
According to Flemming's rule the direction of all parameters are mutually perpendicular to one another, then the Force is in the X direction
Explanation:
(D) i think there you go have a good day
Plasma...I believe is always a good conductor of electricity. I was tempted to say a solid, but not all solids are the same in composition and that goes for liquid and gas as well.
Hopefully this helped and good luck.
Cumulus and cumulonimbus<span />
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.