Answer:
another. persist. continue. last. remain.
Explanation:
Answer:
Correct answer: E total = 2,800 J
Explanation:
Given:
m = 4 kg the mass of the object
V = 20 m/s the speed (velocity) of the object
H = 50 m the height of the object above the surface
E total = ? J
The total energy of an object is equal to the sum of potential and kinetic energy
E total = Ep + Ek
Ep = m g H we take g = 10 m/s²
Ep = 4 · 10 · 50 = 2,000 J
Ek = m V² / 2
Ek = 4 · 20² / 2 = 2 · 400 = 800 J
E total = 2,000 + 800 = 2,800 J
E total = 2,800 J
God is with you!!!
Answer:
Peer reviews are important because individuals with similar background knowledge are used to review work to detect inaccuracies or deficiencies in the work.
Explanation:
Those individuals with similar educational and work background knowledge can more accurately review work since they have the required knowledge base for the subject.
Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
<h3><u>Answer;</u></h3>
Kinetic energy
A car engine changes chemical potential energy into the <u>kinetic energy</u> of the moving car.
<h3><u>Explanation;</u></h3>
- A car engine converts potential chemical energy stored in gasoline into thermal energy and then into kinetic mechanical energy.
- When gasoline undergoes combustion it reacts with oxygen to produce carbon dioxide and water vapor.Gasoline is a mixture of octane and similar hydrocarbons and contains potential chemical energy.
- The hot exhaust gases from the combustion of gasoline that are produced within the cylinder expand and exert pressure, moving the piston in the cylinder outward then inward as the gas is exhausted. Kinetic mechanical energy of the moving pistons is transferred to the drive shaft and eventually to the wheels, giving the car kinetic mechanical energy.