The formation of the outer planets are affected by their
distance from the sun with having them to maintain the lighter elements that
they are composed of such as the hydrogen and helium, having them far away will
also make their planet more cooler as the sun is distant from them.
The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
The state of matter would have to be solid
Answer:
1 question is- I believe 4. Melting Question 2 is Density
Explanation:
THOUGHT ABOUT IT!!!
Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is
Explanation:
From the question we are told that
The focal length is 
This negative sign shows the the microscope is diverging light
The angular magnification is 
The distance between the objective and the eyepieces lenses is 
Generally the magnification is mathematically represented as
![m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]](https://tex.z-dn.net/?f=m%20%20%3D%20%20%5B%5Cfrac%7BZ%20-%20f_e%20%7D%7Bf_e%7D%5D%20%5B%5Cfrac%7B0.25%7D%7Bf_0%7D%20%5D)
Where
is the eyepiece focal length of the microscope
Now making
the subject of the formula
![f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7BZ%7D%7B1%20-%20%5B%5Cfrac%7BM%20%20%2A%20%20f_o%20%7D%7B0.25%7D%5D%20%7D)
substituting values
![f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7B%200.19%20%7D%7B1%20-%20%5B%5Cfrac%7B300%20%20%2A%20%20-0.0055%20%7D%7B0.25%7D%5D%20%7D)