Answer:
negative force
Explanation:
Here woman is applying the force to stop the child or to prevent him from running.
Here we know that the force applied by the woman is opposite to the motion of child but here the child is not displaced by this applied force but the child is only prevented his running.
So here the work done by the woman is zero as there is no displacement by this force.
But here we can say that the the force of woman is against the motion of child so here this force is opposite force and hence it is termed as negative force here.
so correct answer will be
negative force
Answer:
N₂ = 19 turns
Explanation:
A transform is a system with two different windings where the variation of the magnetic beam is the same, if there are no losses in the system we can use Faraday's law
V₁ = -N₁
v₂ = - N₂ \frac{d \Phi_B }{dt}
in this case we look for the number of turns in the second winding
N₂2 =
calculate us
N₂ = 360 6.30/ 120
N₂ = 18.9 turn
The number of turns must be an integer
N₂ = 19 turns
Answer:
Gold Has A Higher Resistance Than Copper. The Sample Of Gold Is Thinner Than The Sample Of Copper. Electrons In Gold Are More Likely To Be Scattered Than Electrons In Copper At Room Temperature When they are exelerated by the same electric field.
Explanation:
Answer:
The final kinetic energy of the Helium nucleus (alpha particle) after been scattered through an angle of 120° is
8.00 x 10-13J
Explanation:
In Rutherford Scattering experiment, the collision of the helium nucleus with the gold nucleus is an ELASTIC COLLISION. This means that the kinetic energy is conserved ( The same before and after the collision).
Thus, the final kinetic energy of the helium nucleus is the same as initial kinetic energy (8.00 x 10^-13Joules)
Although, the kinetic energy is converted to potential energy in Coulomb's law equation.
That is,
1/2(mv^2) = (K* q1q2)/r
Where m is the mass of helium nucleus, v is its colliding velocity, k is electrostatic constant, q1 is the charge on helium nucleus, q2 is the charge on gold nucleus, r is impact parameter
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.