To solve this problem we will apply the concept related to the magnetic dipole moment that is defined as the product between the current and the object area. In our case we have the radius so we will get the area, which would be



Once the area is obtained, it is possible to calculate the magnetic dipole moment considering the previously given definition:



Therefore the magnetic dipole moment is 
Acceleration is the force of something moving, or acceleration can be how fast an object is going!
Answer:
0.125 m
Explanation:
Pressure in fluids is given as the product of density, height and acceleration due to gravity and expressed as
P=hdg
Where h is the height, d is density, g is acceleration due to gravity and P is pressure.
Making h the subject of formula then
h=P/dg
Given specific gravity of a substance, its density is equal to specific gravity multiplied by density of water. Taking density of pure water as 1000 kg/m³ then the density of reference fluid will be 1.05*1000=1050 kg/m³
Substituting pressure with 1.29*10³ pa as given then taking g as 9.81 m/s² then
H=1.29*10³÷(9.81*1050)=0.1252366389981068880151448958788408329692m
Rounded off, the height is approximately 0.125 m
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.
<h3><u>
Full question:</u></h3>
Which statements describe the Mercalli scale? Check all that apply.
A. This scale measures seismic waves based on their size.
B. This scale rates an earthquake according to how much damage it causes.
C.This scale produces a single rating for earthquakes that reach the surface.
D. This scale uses Roman numerals to rank the damage caused by an earthquake.
E.This scale measures the magnitude of an earthquake based on the size of seismic waves.
<h3><u>
Answer:</u></h3>
The Mercalli scale : This scale rates an earthquake according to how much damage it causes and This scale uses Roman numerals to rank the damage caused by an earthquake.
<h3><u>
Explanation:</u></h3>
The Modified Mercalli scale is intended to illustrate the consequences of an earthquake, at a contracted station, on tangible characteristics, on modern fittings and human beings.
The Modified Mercalli Intensity value ascribed to a particular site subsequent an earthquake has an extra significant means of severity to the nonscientist than the magnitude because intensity assigns to the outcomes really encountered at that position. This scale is comprised of 12 growing levels of intensity, denoted by Roman numerals, arranging from gradual shaking to catastrophic impairment.