Answer:

Explanation:
The roller coaster begins with maximum kinetic energy and no gravitational potential energy. The gravitational potential energy reaches its maximum when roller coaster is upside down at the top of the circle. The physical model for the roller coaster is constructed by means of the Principle of Energy Conservation:

The minimum velocity is:

Let assume that radio of curvature is measured in meters. Hence:


Answer:
E) 80 N/m
Explanation:
Given;
mass of the block, m = 4.8 kg
displacement of the block, x = -0.5 m
velocity of the block, v = -0.8 m/s
acceleration of the block, a = 8.3 m/s²
From Newton's second law of motion;
F = ma
Also, from Hook's law;
F = -Kx
where;
k is the force constant
Thus, ma = -kx
k = -ma/x
k = -(4.8 x 8.3) / (-0.5)
k = 79.7 N/m
k ≅ 80 N/m
Therefore, the force constant of the spring is closest to 80 N/m
Answer:
Explanation:
If air resistance is ignored and assume UP and Toward Jason are the positive directions.
horizontal analysis
d = (vx₀)t
t = d/vx₀
horizontal analysis
0 = vy₀t + ½gt²
0 = vy₀(d/vx₀)+ ½g(d/vx₀)²
as vy₀ = v₀sin45 and vx₀ = v₀cos45 and are equal.
0 = d + ½g(d²/v₀²cos²45)
-d = ½g(d²/v₀²cos²45)
-dv₀² = ½g(d²/cos²45)
v₀² = -½g(d/cos²45)
v₀² = -½(-9.81(32.0/cos²45)
v₀² = 313.92
v₀ = 17.717787...
v₀ = 17.7 m/s
Answer:
A 35 m/s
Explanation:
Speed of any object is scalar quantity while velocity is a vector. The scalar quantity is represented only by magnitude it doesn't need direction.
Hence, option A is correct as all other options have direction as well.
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.