1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
15

Will the positioning of your Slinky along the east-west, north-south, or some other orientation affect your readings? Why?

Physics
1 answer:
Oxana [17]2 years ago
5 0

Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.

<h3>Effect of magnet on Slinky</h3>

If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.

When there is a change in the magnetic field, the reading changes.

At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.

Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.

Learn more about magnetic field here: brainly.com/question/7802337

You might be interested in
A 6V radio with a current of 2A is turned on for 5 minutes. Calculate the energy transferred in joules
iogann1982 [59]

Answer:

R=V/I=6/2=3ohm

time =5minutes =5*60=300seconds

I=2A

Heat =I^2Rt=(2)^2*3*300=4*900=3600J

7 0
2 years ago
What is the difference between kinetic and gravitacional energy?
kondaur [170]

Answer:

In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion

In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.

In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies

8 0
3 years ago
Ice core samples are used to measure…
blsea [12.9K]

Answer:

the correct answer is A

6 0
3 years ago
Read 2 more answers
Railroad car A, with mass 6275 kg, is traveling east at 6.5 m/s along a straight track. It strikes railroad car B, with mass 515
LekaFEV [45]

The speed of A and B immediately after collision is 5.28m/s

<u>Explanation:</u>

Mass of A is 6275kg

Speed of A is 6.5m/s

Mass of B is 5155kg

Speed of B is 3.8m/s

Track is frictionless.

A and B stick together.

speed of attached A and B = ?

mₐsₐ + mᵇsᵇ = (mₐ + mb) s

6275 X 6.5 + 5155 X 3.8 = ( 6275 + 5155) X s\\\\s = \frac{40787.5 + 19589}{11430}\\ \\s = \frac{60376.5}{11430}\\ \\s = 5.28m/s

Therefore, The speed of A and B immediately after collision is 5.28m/s

4 0
3 years ago
A tiny object carrying a charge of +44 μC and a second tiny charged object are initially very far apart. If it takes 21 J of wor
STatiana [176]

Answer:

The magnitude of the second charge is \rm 1.062\times 10^{-7}\ C or \rm 0.1062\ \mu C.

Explanation:

The work done in bringing a charged particle from one point to another in the presence of some electric field is equal to the change in the electric potential energy of the charge in moving from one point to another.

The electric potential energy of some charge q_o at a point in the electric field of another charge q is given by the product of the amount of charge q_o and electric potential at that point due to the charge q.

U = q_o\ V.

The electric potential at that point is given by

V = \dfrac{kq}{r}.

where k is the Coulomb's constant.

Therefore,

U=q_o\ \dfrac{kq}{r}.

Now, We have given two charges q_1 = +44\ \mu C = +44\times 10^{-6}\ C and q_2, whose value is to be found.

When the two charges are infinitely dar apart, the electric potential energy of the system is given by

U_i = \dfrac{kq_1q_2}{\infty}=0.

When the coordinates of position of the two charges are

(x_1,\ y_1) = (1.00\ mm,\ 1.00\ mm).\\(x_2,\ y_2) = (1.00\ mm,\ 3.00\ mm).

The distance between the two charges is given by

r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(1.00-1.00)^2+(3.00-1.00)^2}=2.00\ mm = 2.00\times 10^{-3}\ m.

The electric potential energy of the charges in this configuration is given by

U_f = \dfrac{kq_1q_2}{r}\\=\dfrac{(8.99\times 10^9)\times (+44\times 10^{-6})\times q_2}{2.00\times 10^{-3}}\\=1.9778\times 10^8\times q_2.

The change in the electric potential energy of the system is equal to the work done to bring the system from inifinitely far apart position to given configuration.

Therefore,

W = U_f-U_i\\21=(1.9778\times 10^8\times q_2)-0\\\Rightarrow q_2 = \dfrac{21}{1.9778\times 10^8}\\=1.062\times 10^{-7}\ C\\=0.1062\times 10^{-6}\ C\\=0.1062\ \mu C.

6 0
3 years ago
Other questions:
  • How does a projectile differ from an object in free fall?
    14·2 answers
  • What is one characteristic of a sample of matter that indicates it is a pure substance? A) It can be separated using by a physic
    13·2 answers
  • If the force of gravity between a book of mass 0.50 kg and a calculator of 0.100 kg is 1.5 × 10-10 N, how far apart are they?
    14·1 answer
  • 9) What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius?
    7·1 answer
  • Dr. Glover's office has one vendor for their practice management software and another for their electronic health record, but th
    9·1 answer
  • A hot metal washer is placed in a jar of cool water.
    6·1 answer
  • 3 A picture is supported by two vertical strings; if the weighi
    9·1 answer
  • What is the major difference between the natural frequency and the damped frequency of oscillation.​
    14·1 answer
  • PLEASE HELP!!! I have an electromagnet. If I detach the two wires from the battery and reattach them to the opposite terminals,
    6·1 answer
  • What force is required to move 7 M if the work done is 9 J
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!