1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
4 years ago
8

consider the following controls in an automobile in motion : gas pedal , brake , steering wheel . what are the controls in this

list that cause an acceleration of the car ?
Physics
2 answers:
kenny6666 [7]4 years ago
5 0

Answer: Gas pedal

Explanation: Gas pedal is also known as accelerator pedal.

It is a trigger in an automobile which accelerates the process of fuel combustion in the engine. Automobiles consist of an Internal Combustion engine i.e. the fuel burns inside a closed chamber to generate the energy.

When the gas pedal is triggered the supply of the fuel to the engine increases and the rate of fuel combustion also increases which in turn produces greater power. And we know that power is the rate of doing work or the rate of energy transfer which causes the acceleration in the vehicle.

tatyana61 [14]4 years ago
3 0
All of the controls can cause acceleration. The gas pedal and brake cause the car to change speed and the steering wheel can cause a change in velocity by changing its direction which is also acceleration. 
You might be interested in
I’ve been stuck please help !!
Nat2105 [25]

Answer:

The slope of the position time graph gives the velocity.

Explanation:

The slope of the position time graph gives the value of velocity.

In first graph,

The slope is constant in both the parts but positive . So the velocity is also constant and positive for both the parts.  and more than the second part, so the initial velocity is more than the final velocity.

In the second graph,

The slope is constant in both the parts but negative. So, the velocity is constant but negative for both the parts. Initial velocity is more negative than the final velocity.

6 0
3 years ago
What does m/s/s mean?
Pani-rosa [81]

Explanation:

There are two answers

m/(s/s)=m

or

(m/s)/s=m/s²

5 0
3 years ago
1. *A car is going over the top of a hill whose curvature approximates a circle of radius 200 m. At
Greeley [361]

Answer:

The velocity of motion at which the occupants of the car appear to weigh 20% less than their normal weight is approximately 19.81 m/s

Explanation:

The given parameters are;

The curvature of the hill, r = 200 m

Due to the velocity, v, the occupants weight = 20% less than the normal weight

The outward force of an object due to centripetal (motion) force is given by the following equation;

F_c = \dfrac{m \times v^2}{r}

Where;

r = The radius of curvature of the hill = 200 m

Given that the weight of the occupants, W = m × g, we have;

F_c = 0.2 \times W = 0.2 \times m \times g

\therefore 0.2 \times m \times g = \dfrac{m \times v^2}{r}

v = √(0.2 × g × r)

By substitution, we have;

v = √(0.2 × 9.81 × 200) ≈ 19.81

The velocity of motion at which the occupants of the car appear to weigh 20% less than their normal weight ≈ 19.81 m/s.

3 0
3 years ago
A 2-kg toy car accelerates from 0 to 5 m/s2. It
yan [13]
10 joules of work is done by the object
8 0
3 years ago
Can someone please help?? I don’t understand this material!!!
Debora [2.8K]

Answer:

1)

When the person throws the ball away, the person rolls backward. This is due to the law of conservation of momentum: in fact, the total momentum of the person+ball system must be conserved.

At the beginning,

p_i=0

after throwing the ball, the total momentum is the sum of the momentum of the person and of the ball:

p_f=p_p + p_b

Since momentum is conserved,

p_i = p_f\\0=p_p+p_b

So

p_p = -p_b

Therefore, the person has equal momentum (in magnitude) but opposite direction to the ball, so the person rolls backward.

However, if the person hold to the ball, then they will have same momentum (moving in the same direction). In order to conserve the total momentum (which was zero at the beginning), the only possible solution is that

p_p=p_b=0

which means that both the person and the ball will remain at rest. This is because there are no external forces acting on the system, so the system cannot move.

2)

The change in momentum of an object is given by

\Delta p=m(v-u)

where

m is the mass of the object

v is its final velocity

u is the initial velocity

For the clay ball in this problem, we have:

m = 50 g = 0.050 kg

v = 0 m/s (it sticks on the wall)

u = 1 m/s

So its change in momentum is

\Delta p_c=(0.050)(0-1)=-0.050 kg m/s

For the superball, we have:

m = 50 g = 0.050 kg

v = -0.8 m/s (it bounces back)

u = 1 m/s

So its change in momentum is

\Delta p_s = (0.050)(-0.8-1)=-0.09 kg m/s

So, the superball has a greater change in momentum (in magnitude).

3a)

According to Newton's third law of motion:

"When an object A exerts a force (action force) on an object B, then object B exerts an equal and opposite force (reaction force) on object A".

Here, we have a Hummer and a Beetle colliding head-on: we can identify them as object A and object B. Therefore, according to Newton's third law:

- The action force is the force of impact exerted by the Hummer on the Beetle

- The reaction force is the force of impact exerted by the Beetle on the Hummer

And according to the Law, the two forces are equal in magnitude: so, the two vehicles experience the same force of impact.

3b)

The change in momentum of each vehicle during the collision can be written as

\Delta p = F\Delta t (1)

where

\Delta p is the change in momentum

F is the force experienced by the vehicle

\Delta t is the duration of the collision

in part 3a), we said that the two vehicles experience the same force in the collision.

Moreover, the duration of the collision, \Delta t, is the same for the two vehicles.

As a result, according to formula (1), the two vehicles have same change in momentum (however, the directions would be opposite, since they experience force in opposite directions).

3c)

According to Newton's second law of motion, the acceleration of an object is given by:

a=\frac{F}{m}

where

F is the force experienced by the object

m is its mass

a is its acceleration

In part 3a), we stated that the force experienced by the Beetle and the Hummer is the same. However, the mass of the Beetle is smaller than the mass of the Hummer: from the equation we see that the acceleration is inversely proportional to the mass, therefore the Beetle will experience a greater acceleration.

4a)

The force experienced by the dashboard on the car is given by:

F=\frac{\Delta p}{\Delta t}

Where

\Delta p is the change in momentum

\Delta t is the duration of the collision

In a padded dashboard, the duration of the collision \Delta t is larger than the duration of the collision for a hard dashboard. According to the equation above, the force experienced by the dashboard (and so, the car) is inversely proportional to the duration of the collision: therefore, since the padded dashboard has a larger \Delta t, it will experience a smaller force than the hard dashboard.

4b)

The force experienced by the climber if falling is given by

F=\frac{\Delta p}{\Delta t}

Where

F is the force experienced by the climber

\Delta p is his change in momentum

\Delta t is the duration of fall

Nylon is a very elastic material, so it is able to "soften" the fall by stretching a lot. As a result, the nylon increases the value of \Delta t in the formula. Since the force experienced by the climber is inversely proportional to \Delta t, the climber will feel less force thanks to the nylon.

4c)

This technique is used to exploit the "push" given by the second car of the train to the first car when the brakes are applied.

At first, the engine is started, and the first car starts accelerating, pulling the second car (and the following cars). Then, the brakes are applied on the first car: however, the second car keeps moving by inertia, so then it gives a push forward on the first car. Then, this action is repeated several times, so that this push exerted by the second car is exploited several times.

3 0
3 years ago
Other questions:
  • A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
    15·1 answer
  • A vertical spring with spring constant 23.15 N/m is hanging from a ceiling. A small object is attached to the lower end of the s
    11·1 answer
  • Objects A and B each have a mass of 25 kilograms. Object A has a velocity of 5.98 meters/second. Object B is stationary. They un
    8·2 answers
  • How does S.I is differ from tha Fundamental unit​
    10·1 answer
  • At an altitude of 5000 m the rocket's acceleration has increased to 6.9 m/s2 . What mass of fuel has it burned?
    5·1 answer
  • When the starter motor on a car is engaged, there is a 310 A current in the wires between the battery and the motor. Suppose the
    5·1 answer
  • Jupiter is 317 times more massive than the Earth. An astronaut on Jupiter would _____. weigh less than on Earth weigh more than
    5·1 answer
  • A musical tone sounded on a pi has frequency of 410 Hz and a wavelength of 0.80 m.
    13·1 answer
  • Write a short paragraph that explains how a sport using a ball would be played differently on a planet of your choice. For examp
    6·1 answer
  • The international Space Station (ISS) orbits the Earth once every 90 mins at an altitude of 409 km. How high would it have to be
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!