Answer: i) 2.356 × 10^-3 m = 2.356mm, ii) 4.712 × 10^-3 m = 4.712mm
Explanation: The formulae that relates the position of a fringe from the center to the wavelength, distance between slits and distance between slits and screen is given below as
y = R×(mλ/d)
Where y = distance between nth fringes and the center fringe.
m = order of fringe
λ = wavelength of light = 589nm = 589×10^-9m
R = distance between slits and screen = 1.0m
d = distance between slits = 0.25mm = 0.00025m
For distance between the first dark fringe and the center fringe.
This implies that m = 1
y = 1 × 589×10^-9 × 1/0.00025
y = 589×10^-9/0.00025
y = 2,356,000 × 10^-9
y = 2.356 × 10^-3 m = 2.356mm
For the second dark fringe, this implies that m = 2
y = 1 × 2 × 589×10^-9/0.00025
y = 1178 × 10^-9 /0.00025
y = 4,712,000 × 10^-9
y = 4.712 × 10^-3 m = 4.712mm
Answer:
a= -0.83m\s^2
Explanation:
a = v \ t
a = -25 \ 30 = -0.833 m\s^2
the object is slowing down 0.83 meter every second
Answer:
<u>The pendulum bob swing past the mean position because:</u>
When a pendulum's bob is accelerating at its extreme position its velocity is zero. Due to the restoring toque the bob starts to accelerates towards its mean postion. The maximum acceleration of the pendulum's bob is and the the acceleration decreases as towards the mean position.
The acceleration at the mean position becomes zero but the velocity remains maximum. Hence the bob continues to move and does not stops.Thus it can summarised as the force decreases ,acceleration decreases and velocity increases at slow rate.