A wave carries <u>energy</u><u> </u>from one place to another.
mechanical waves carry energy through <u>MEDIUM</u><u>.</u>
<u>SO</u><u> </u><u>THIS</u><u> </u><u>IS</u><u> </u><u>MY</u><u> </u><u>ANSWER</u>
Given that metal cases of electrical appliances are connected to the wire, let's select the statement which is not correct from the list of statements.
The earth wire is used to protect you and help reduce the risk of receiving an electric shock. The earth wire reduces the risk of electric shock by creating a path for a fault or lose current to flow to the Earth.
The Live wire may become loose and touch the metal case. In this case, the earth wire will channel the fault current to the earth thereby reducing the risk of electric shock.
If the metal case becomes live, the earth wire conducts current to the ground. This helps prevent electric shock from the metal case.
The Earth wire has low or no resistance. It is always made of copper.
It provides a low resistance path to the ground.
Therefore, the statement ''the earth wire needs to have high resistance'' is NOT current.
ANSWER:
C. The earth wire needs to have a high reistance.
Answer:
The answer to your question is: 13.2 m/s
Explanation:
final speed (fs) = 77 m/s
t = 6.5 s
gravity (g) = 9.81 m/s2
initial speed (is) = ?
Formula
fs = is + gt from this equation we clear "is" = fs - gt
Substitution is = 77 - (9,81)(6.5)
Process is = 77 - 63.8
is = 13.2 m/s
Force = (mass) x (acceleration)
5 N = (9 kg) x (acceleration)
Divide each side
by 9 kg : 5 N / 9 kg = acceleration
Acceleration = (5/9) kg-meter/sec²-kg
= 0.555... m/s² .
Answer:
W = 2352 J
Explanation:
Given that:
- mass of the bucket, M = 10 kg
- velocity of pulling the bucket, v = 3

- height of the platform, h = 30 m
- rate of loss of water-mass, m =

Here, according to the given situation the bucket moves at the rate,

The mass varies with the time as,

Consider the time interval between t and t + ∆t. During this time the bucket moves a distance
∆x = 3∆t meters
So, during this interval change in work done,
∆W = m.g∆x
<u>For work calculation:</u>
![W=\int_{0}^{10} [(10-0.4t).g\times 3] dt](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7B10%7D%20%5B%2810-0.4t%29.g%5Ctimes%203%5D%20dt)
![W= 3\times 9.8\times [10t-\frac{0.4t^{2}}{2}]^{10}_{0}](https://tex.z-dn.net/?f=W%3D%203%5Ctimes%209.8%5Ctimes%20%5B10t-%5Cfrac%7B0.4t%5E%7B2%7D%7D%7B2%7D%5D%5E%7B10%7D_%7B0%7D)
