Answer:

Explanation:
When two cars collide then the momentum of two cars will remains conserved
- Mass of two cars = 100 kg
-
Speed of car B = - 10 m/s
-
After collision the speed of car B = +8 m/s
By momentum conservation equation


|V| = 10.33 units and the direction θ = -47.35° or 312.65°.
Given the x and y components of a vector, we can calculate the magnitude and direction from these components.
Applying the Pythagorean theorem we have that the magnitude of the vector is:
|V| = 
|V| = 
The expression for the direction of a vector comes from the definition of the tangent of an angle:
tan θ =
------> θ = arc tan 
θ = arc tan 
θ = -47.35° or 312.65°
Answer:
It depends on what the object is and what planet it is on and what the conditions are.
Answer:
C. chemical energy from the batteries
Explanation:
Remote-controlled car or commonly called RC cars are toy vehicles that are controlled or propelled to move from a distance by a wire-connected remote that sends radiowaves to the receiver. According to this question involving the remote-controlled car Lena is playing with, a transmitter from the remote propels the wheel and axle to make the car move.
The car contains a battery cell that uses it's chemical energy as a source of power for the wheel and axle system. Hence, the chemical energy from the batteries of a remote-controlled car powers the wheel and axle to make the car move.
I = pressure amplitude given = 0.2 W/m²
dB = decibel reading
decibel reading from the pressure amplitude is given as
dB = 10 log₁₀ (I/10⁻¹²)
inserting the values in the above equation
dB = 10 log₁₀ (0.2/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹.10¹²)
dB = 10 log₁₀ (2 x 10¹²⁻¹)
dB = 10 log₁₀ (2 x 10¹¹)
dB = 113.01 db
hence the decibel reading comes out to be 113.01 db