Answer:
The value is 
Explanation:
From the question we are told that
The period of the asteroid is 
Generally the average distance of the asteroid from the sun is mathematically represented as
![R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BG%20M%20%2A%20T%5E2%20%7D%7B4%20%5Cpi%7D%20%7D)
Here M is the mass of the sun with a value

G is the gravitational constant with value 
![R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6.67%20%2A10%5E%7B-11%7D%20%20%2A%201.99%2A10%5E%7B30%7D%20%2A%20%5B5.55%20%2A10%5E%7B9%7D%5D%5E2%20%7D%7B4%20%2A%203.142%20%7D%20%7D)
=> 
Generally

So

=> 
=> 
Answer:
Glow
Explanation:
Actually, it is the air in front of the meteoroid that heats up. The particle is traveling at speeds between 20 and 30 kilometers per second. It compresses the air in front, causing the air to get hot. The air is so hot it begins to glow — creating a meteor - the streak of light observed from Earth.
Hope this helped!
The best name for the ionic bond that forms between them is Beryllium Bromide.
We have been provided with data,
Beryllium charge, q = 2
Bromine charge, q = -1
As we know the valance electron of Be is +2 and the valance electron of bromine is -1. Since one is metallic and the other is non-metallic.
Now, when they combine they exchange valance electron, and bromine change into bromide so they form Beryllium Bromide.
So, the best name for the ionic bond that forms between them is Beryllium Bromide.
Learn more about ionic bonds here:
brainly.com/question/21464719
#SPJ4