The melting point (or, rarely, liquefaction point) of a solid is the temperature at which it changes state from solid to liquid at atmospheric pressure. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at standard pressure.
Answer:
Mass = 0.000176 gram
Steps:
m = V × ρ
= 20 milliliter × 8.8 gram/cubic meter
= 2.0E-5 cubic meter × 8.8 gram/cubic meter
= 0.000176 gram
Explanation:
The volume of base that is actually needed is 24.5 ml of base.
Titration is a chemical technique which is used in chemistry to find out the concentration of an unknown solution. A solution of known concentration is usually used to determine the concentration of the unknown solution. The known solution is usually added to a specific quantity of the unknown solution until the reaction is complete. An indicator is typically added to the unknown solution and the reaction is deem to be completed when there is a color change in the unknown solution.
Thus, the volume of the base that is required to reach the color end point is actually the base volume that is needed for the reaction.
For Ca(OH)2, Ksp = [Ca2+][OH-]^2
You have your Ksp as 6.5 x 10^-6. Your [OH-] comes almost entirely from the 0.10 mol of NaOH, since Ca(OH)2 barely dissolves. Your [OH-] is therefore 0.10 M (since you have 1 L of solution).
6.5 x 10^-6 = [Ca2+](0.10)^2
Solve for [Ca2+]:
6.5 x 10^-6 / (0.10)^2 = [Ca2+]
[Ca2+] = 0.00065 M
The maximum concentration of [Ca2+] is 0.00065 M, and you have 0.0010 M Ca(OH)2, so you’ll end up with 0.00065 M Ca2+ in solution.