Answer:
earth
Explanation:
The formula for the orbital period of the moon is given by
As the time period is inversely proportional to the square root of the acceleration due to gravity of the planet.
As the value of acceleration due to gravity on Jupiter is more than the earth, so the period of moon around the earth is large as compared to the period of the moon around the Jupiter when the distance is same.
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,
,
- Thus, the final temperature of the system will be equal to the initial temperature,
<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,
Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
Answer:
Explanation:
Situations in which an electron will be affected by an external electric field but will not be affected by an external magnetic field
a ) When an electron is stationary in the electric field and magnetic field , he will be affected by electric field but not by magnetic field. Magnetic field can exert force only on mobile charges.
b ) When the electron is moving parallel to electric field and magnetic field . In this case also electric field will exert force on electron but magnetic field field will not exert force on electrons . Magnetic field can exert force only on the perpendicular component of the velocity of charged particles.
Situations when electron is affected by an external magnetic field but not by an external electric field
There is no such situation in which electric field will not affect an electron . It will always affect an electron .