Answer:
107.4 meters
Explanation:
gravity is 9.8m/s^2
max height = (velocity squared times sin squared angle) ÷ ( speed of gravity times 2 )
max height = (48 squared times sin of 73 squared) ÷ ( 9.8 times 2 )
Answer:
yes. why do you need this answered asap? lol
Answer:
x-component of velocity: 7.5 m/s
y-component of velocity: 13 m/s
Explanation:
This problem is pure trigonometry. Assuming you know trig, there are only a couple of steps to solving this problem. First, split the velocity into components; recall that any vector not directed along an axis has x and y components. Then, remember that sinΘ = opposite/hypotenuse. Applying this to your scenario, you get sin60° = vy/15. Multiplying this out gives you vy=15sin60. Put this into a calculator (make sure it's set to degree mode because the angle in this problem is in degrees) and you should get 12.99, which you can round up to 13 m/s. This is the velocity in the y-direction.
The procedure to find the x-velocity is very similar, but instead of using sine, we will use the cosine of theta. Recall that cosΘ=adjacent/hypotenuse. Once again plugging this scenario's numbers into that, you end up with cos60 = vₓ/15. Multiplying this out gives you vₓ = 15cos60. Once again, plug this into your calculator. 7.5 m/s should be your answer. This is the velocity in the x-direction.
By the way, a quick way to find the components of a vector, whether it's velocity, force, or whatever else, is to use these functions. Generally, if the vector points somewhere that's not along an axis, you can use this rule. The x-component of the vector is equal to hypotenuse*cosΘ and the y-component of the vector is equal to hypotenuse*sinΘ.
Answer:
Explanation:
Due to heat energy , metal expands . Formula for linear expansion is as follows .
L = l ( 1 + α Δt )
where L is expanded length , l is original length , α is coefficient of linear expansion and Δt is increase in temperature .
To pass the sphere through the ring , the diameter of both ring and sphere should be same after heating . Let after increase of temperature Δt , their diameter becomes same as L . The linear coefficient of brass and steel are
20 x 10⁻⁶ and 12 x 10⁻⁶ respectively .
For steel sphere ,
L = 25 ( 1 + 12 x 10⁻⁶ Δt )
For brass ring
L = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
25 ( 1 + 12 x 10⁻⁶ Δt ) = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
1.004( 1 + 12 x 10⁻⁶ Δt ) = ( 1 + 20 x 10⁻⁶ Δt )
1.004 + 12.0482 x 10⁻⁶ Δt = 1 + 20 x 10⁻⁶ Δt
.004 = 7.9518 x 10⁻⁶ Δt
Δt = 4000 / 7.9518
= 503⁰C.
final temp = 503 + 15 = 518⁰C .
Answer:
-252.52
Explanation:
L = Distance between lenses = 10 cm
D = Near point = 25 cm
= Focal length of objective = 0.9 cm
= Focal length of eyepiece = 1.1 cm
Magnification of a compound microscope is given by

The angular magnification of the compound microscope is -252.52