Based on observation of polar and non-polar molecules, polar molecules would attract each other more strongly.
<h3>What are polar and non-polar molecules?</h3>
Polar molecules are those molecules that can ionize or dissociate into their respective positive and negative ions when in an aqueous solution.
Nonpolar molecules, on the other hand, are not ionic i.e. not dissociating into ions when dissolved in water.
Polar molecules like water (H2O) contains an uneven distribution of cations (+) and anions (-), hence, would be more attracted to one another than nonpolar molecules that have an even distribution of ions.
Learn more about polarity at: brainly.com/question/16106487
#SPJ1
Answer:
The attractive forces must be overcome are :
Explanation:
For the compound to dissolve the attractive forces existing between atoms of the compound must be reduced
<u>CsI is ionic compound </u><em>and its molecules are held together by ionic(electrostatic) force . These force must be weakened for its dissolution</em>
Forces in HF <em>:</em>
<em>1 .Hydrogen Bonding : In HF strong intermolecular Hydrogen Bonding exist between the electronegative F and Hydrogen</em>
2. Dipole - dipole : <em>HF is polar . So it is a permanent dipole and has dipole diople interaction</em>
Answer:
B. A precipitate will form since Q > Ksp for calcium oxalate
Explanation:
Ksp of CaC₂O₄ is:
CaC₂O₄(s) ⇄ Ca²⁺ + C₂O₄²⁻
Where Ksp is defined as the product of concentrations of Ca²⁺ and C₂O₄²⁻ in equilibrium:
Ksp = [Ca²⁺][C₂O₄²⁻] = 2.27x10⁻⁹
In the solution, the concentration of calcium ion is 3.5x10⁻⁴M and concentration of oxalate ion is 2.33x10⁻⁴M.
Replacing in Ksp formula:
[3.5x10⁻⁴M][2.33x10⁻⁴M] = 8.155x10⁻⁸. This value is reaction quotient, Q.
If Q is higher than Ksp, the ions will produce the precipitate CaC₂O₄ until [Ca²⁺][C₂O₄²⁻] = Ksp.
Thus, right answer is:
<em>B. A precipitate will form since Q > Ksp for calcium oxalate</em>
<em></em>
Answer:
The mass (M) and speed of an object (v)
Explanation:
,Answer:
kinetic energy, gamma decay, it becomes less stable by repositioning its particles
Explanation: