Partial Lunar Eclipse:
A partial lunar eclipse is when the earth gets between the Sun and Moon. However, all three bodies are not in alignment meaning we are able to see some more like part of the moon's surface as it moves in route of the Earth's shadow.
Total Lunar Eclipse:
The three celestial bodies are perfectly aligned which allows for the earth to completely block the sun's rays from hitting/reaching the moon. The sun is positions is in back of the Earth which then causes the shadow of the earth to be cast on the Moon covering the moon completely. When that happens you get the phenomenon called a total lunar eclipse.
Hopefully this helped and good luck.
Answer:
the can's kinetic energy is 0.42 J
Explanation:
given information:
Mass, m = 460 g = 0.46 kg
diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m
velocity, v = 1.1 m/s
the kinetic energy of the can is the total of kinetic energy of the translation and rotational.
KE =
I ω^2 + 
where
I =
and ω = 
thus,
KE =
(
)^2 + 
=
+ 
=
+ 
= 
=
= 0.42 J
From the equations of linear motion,
v² = u² + 2as where v is the final velocity, u is the initial velocity and a is the gravitational acceleration, and s is the displacement,
Thus, v² = u² -2gs, but v=0
hence, u² = 2gs
= 2×9.81×0.43
= 8.4366
u = √8.4366
=2.905 m/s
Hence the initial velocity is 2.905 m/s
Then using the equation v= u +gt .
Therefore, v = u -gt. (-g because the player is jumping against the gravity)
but, v = 0
Thus, u= gt
Hence, t = u/g
= 2.905/9.81
= 0.296 seconds
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min