A grounding electrode is any object that directly links to the earth. They are most times used to divert electricity from the elements.
- Swimming pool structures and structural <u>reinforcing steel. 250.52(B)(3)</u><u>,</u> [680.26(B)(1), and (B)(2)] shall not be used as a grounding electrode.
In code 250.52(B)(3) it is clearly specified that the bonding grid and reinforcing steel that is related to a pool should not be used as grounding electrodes.
This is essential because when a metal that lies beneath a swimming pool is used as a grounding electrode, current from nearby electrical systems can be introduced into the pool.
This could cause the electrocution of anybody in the swimming pool at that time.
Learn more here:
brainly.com/question/14681208
Answer:
1)Krypton
2)11H
Explanation:
electrons=protons
protons=atomic number
mass number=protons+neutrons
mass number is the superscript
atomic number is the subscript.
1)The answer is Krypton because its atomic number= number of protons=number of electrons is 36.
mass number is 46+36=82.
2)subscript=atomic number=number of protons=number of electrons
i. H = electrons=1
=neutrons=0
ii. Cl=electrons=17
=neutrons=35-17=18
iii. Na=electrons=11
=neutrons=23-11= 12
so the answer is Hydrogen because it has 1 electron and 0 neutron.
I hope this helps.
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.