Water is made of 2 hydrogen and 1 oxygen atoms. The molecular weight for water should be 1+ 1+ 16= 18. Then the amount of water molecule in 11.4 gram of water should be: 11.4g/18= 0.63 moles.
Since 1 water means 2 hydrogen atoms, then the amount of hydrogen atom should be: 2/1 * 0.63= 1.26 moles of hydrogen
B. because the other options are different sciences (biology and entomology)
The answer is that all of them are correct.
Using a more concentrated HCl solution and Crushing the CaCO₃ into a fine powder makes the reaction to occur at a faster rate.
<u>Explanation:</u>
CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + H₂O(aq) + CO₂(g)
When calcium carbonate reacts with hydrochloric acid, it gives out carbon-dioxide in the form of bubbles and there is a formation of calcium chloride in aqueous medium.
The rate of the reaction can be increased by
- Using a more concentrated HCl solution
- Crushing the CaCO₃ into a fine powder
When concentrated acid is used instead of dilute acid then the reaction will occur at a faster rate.
When CaCO₃ is crushed into a fine powder then the surface area will increases thereby increasing the rate of the reaction.
Answer:


Explanation:
first write the equilibrium equaion ,
⇄ 
assuming degree of dissociation
=1/10;
and initial concentraion of
=c;
At equlibrium ;
concentration of
![[C_3H_5O_3^{-} ]= c\alpha](https://tex.z-dn.net/?f=%5BC_3H_5O_3%5E%7B-%7D%20%20%5D%3D%20c%5Calpha)
![[H^{+}] = c\alpha](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20c%5Calpha)

is very small so
can be neglected
and equation is;

= 
![P_H =- log[H^{+} ]](https://tex.z-dn.net/?f=P_H%20%3D-%20log%5BH%5E%7B%2B%7D%20%5D)





composiion ;
![c=\frac{1}{\alpha} \times [H^{+}]](https://tex.z-dn.net/?f=c%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%20%5Ctimes%20%5BH%5E%7B%2B%7D%5D)
![[H^{+}] =antilog(-P_H)](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3Dantilog%28-P_H%29)
![[H^{+} ] =0.0014](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%20%3D0.0014)

