Moles of H₂ are needed to produce 9.33 moles of NH₃ : 13.995
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
The reaction coefficient in a chemical equation shows the mole ratio of the reactants and products
Reaction for the synthesis of ammonia :
N₂+3H₂⇒2NH₃
moles of NH₃ = 9.33
From equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol H₂ :

Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
C6H5 is the molecular formula for Phenyl.
<h3><u>Answer</u>;</h3>
Concave Lenses
<h3><u>Explanation</u>;</h3>
- A concave lens is thin in the middle and thick at the edges, such that it seems to cave inwards. It spreads light rays apart producing an image smaller than the actual object.
- <em><u>Images formed by a concave lens are virtual, upright, reduced in size and located on the same side of the lens as the object. Diverging lenses or concave lens always produce images that share these characteristics. The location of the object does not affect the characteristics of the image. </u></em>
Answer: Option (A) is the correct answer.
Explanation:
When energy is transferred from the air to the water then energy is absorbed by the water molecules.
This energy travels through one molecule of water to another molecule of water by the process of convection.
Thus, we can conclude that when energy is transferred from the air to the water, then it travels through the water.