It would be C because It will have a lower activation energy than Trial A.
Answers: -
For high kinetic energy, the object must have high speed of movement.
1) An airplane has a lot of kinetic energy. Airplanes move at high speed and thus posses a lot of kinetic energy.
2) A bullet from a gun has a lot of kinetic energy due to the high speed of bullet.
3) A formula one car moving at high speeds have a lot of kinetic energy.
4) A train moving at high speed has lots of kinetic energy.
5) An asteroid has a lot of kinetic energy due to it's high speed.
6) A roller coaster moving at high speeds have a lot of kinetic energy.
7) A missile fired from a fighter plane has lots of kinetic energy.
Answer:
The frequency of the photon that can dissociate dichlorine is 6.02×10¹⁴ Hz
Explanation:
The energy of a photon is given by the equation:
E=h·f
E=3.99×10⁻¹⁹ J/molecule
h (Planck's constant)=6.626×10⁻³⁴ m²·kg/s
∴ f=E/h
=6.02×10¹⁴ s⁻¹= 6.02×10¹⁴ Hz
Answer:
Without the tilt, lunar eclipse will happen every month.
24.25 moles of NO can be produced using 97 moles of HNO3.
<h3>What is balanced chemical equation?</h3>
Equal numbers of atoms from various elements are present in both the reactants and the products in balanced chemical equations. Varied elements' atom counts in the reactants and products of unbalanced chemical equations are different.
3 Cu + 8HNO3 g → 3 Cu(NO3)2 + 2 NO + 4 H2O
The number of moles consumed can be calculated using comparing with coefficients in the balanced reaction .
So , from above eq we get that 8 moles of HNO3 are consumed to make 2 moles of NO.
⇒ 8 HNO3⇔2 NO
⇒ 1 HNO3⇔ 1/4 NO
This means that for each mole of HNO3 produces 1/4 moles of NO.
So , for 97 moles of HNO3 ,
moles of NO can be made,
So, total moles of NO made are 24.25 moles.
Lean more about balanced reactions here brainly.com/question/26694427
#SPJ10