The answer is definitely D
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
Lets assume x volume of NaOH and x volume of HCl are added together.
NaOH ---> Na⁺ + OH⁻
NaOH is a strong base therefore it completely ionizes and releases OH⁻ ions into the medium
HCl ---> H⁺ + Cl⁻
HCl is a strong base and completely ionizes and releases H⁺ ions in to the medium. number of NaOH moles in 1 L - 0.1 mol
Therefore in x L - 0.1 /1 * x = 0.1x moles of NaOH present
Similarly in HCl x L contains - 0.1x moles of HCl
H⁺ + OH⁻ ---> H₂O
Due to complete ionisation, 0.1x moles of H⁺ ions and 0.1x moles of OH⁻ ions react to form 0.1x moles of H₂O. Therefore all H⁺ and OH⁻are completely used up and yield water molecules.
Then at this point the H⁺ and OH⁻ ions in the medium come from the weak dissociation of water. This is equivalent to 1 x 10⁻⁷M
pH = -log [H⁺]
pH = -log [10⁻⁷]
pH = 7
pH is therefore equals to 7 which means the solution is neutral
Answer:
Because it only needs one more electron to get to a full valence shell (8), so it really wants it and is pulling other electrons in. It also has to do with needing one more electron to fill the 2p shell. It is a small element which means its electrons are pulled tightly to the nucleus.
Hope this helps!
Explanation:
Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.
