
Actually Welcome to the Concept of the Kinematics.
so here we get as,
V^2 = U^2 + 2as
so here, a = -0.2 m/s^2
(0.1)^2 = (0.3)^2 + (-0.2)(s)
=> 0.01 = 0.09 - 0.2s
=> 0.2s = 0.08
=> s = 0.08/0.2
=> s = 0.4 m
Given:
m = 0.240 kg = 240 g, the mass of O₂
V = 3.10 L = 3.10 x 10⁻³ m³, the volume
Because the molar mass of oxygen is 16, the number of moles of O₂ is
n = (240 g)/(2*16 g/mol) = 7.5 mol
As an ideal gas,
p*V = nRT
or
V = (nRT)/p
where R = 8.314 J/(mol-K)
When
p = 0.910 atm = (0.910 atm) * (101325Pa/atm) = 92205.75 Pa
T = 27 °C = (27 + 273) K = 300 K
then the volume is

V = (0.2029 m³)*(10³ L/m³) = 202.9 L
Answer: 203 liters
4 times as much distance to stop
That is FALSE. The equation to calculate the charges has a distance component that is in the denominator which means that it is inversely proportional (as the distance os greater the force is smaller)
The answer to the first one is sublimation.