Answer:
The driver's average velocity is 82.35 km/h.
Explanation:
Given:
The motion of the driver can be divided into 3 parts:
i. Displacement of the driver in 1.5 hours = 135 km
ii. Rest for 45 minutes.
iii. Displacement in next 2 hours = 215 km
The direction of motion remains same (east).
Now, total displacement of the driver is,
km.
Rest time is 45 minutes. Converting it to hours, we need to use the conversion factor
hour.
So, 45 minutes in hours is equal to
hours.
Now, total time taken for the complete journey is, 
Average velocity is given as:

Therefore, the driver's average velocity is 82.35 km/h
Answer:
a)
two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign. both charges are positive(+) or Negative (-)
b)
both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Explanation:
Given that;
L = 0.26 m
k = 180 N/m
x = 0.039 m
a)
we know that two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign.
b)
Spring force F = kx
F = 180 × 0.039
F = 7.02 N
Now, Electrostatic force F = Keq²/r²
where r = L + x = ( 0.26 + 0.039 )
we know that proportionality constant in electrostatics equations Ke = 9×10⁹ kg⋅m3⋅s−2⋅C−2
so from the equation; F = Keq²/r²
Fr² = Keq²
q = √ ( Fr² / Ke )
we substitute
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ (0.627595 / 9×10⁹)
q = √(6.97 × 10⁻¹¹)
q = 8.35 × 10⁻⁶ C
Therefore both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
The density of seawater plays a vital role in causing ocean currents and circulating heat because of the fact that dense water sinks below less dense. long story short, seawater is the problem because its denser than pure water.
Answer:
Say the full question I can't understand what it is