Answer:
The energy stored in the solenoid is 7.078 x 10⁻⁵ J
Explanation:
Given;
diameter of the solenoid, d = 2.80 cm
radius of the solenoid, r = d/2 = 1.4 cm
length of the solenoid, L = 14 cm = 0.14 m
number of turns, N = 200 turns
current in the solenoid, I = 0.8 A
The cross sectional area of the solenoid is given as;

The inductance of the solenoid is given by;

The energy stored in the solenoid is given by;
E = ¹/₂LI²
E = ¹/₂(2.212 x 10⁻⁴)(0.8)²
E = 7.078 x 10⁻⁵ J
Therefore, the energy stored in the solenoid is 7.078 x 10⁻⁵ J
Answer:
v = -1.8t+36
20 seconds
360 m
40 seconds
36 m/s
The object speed will increase when it is coming down from its highest height.
Explanation:

Differentiating with respect to time we get

a) Velocity of the object after t seconds is v = -1.8t+36
At the highest point v will be 0

b) The object will reach the highest point after 20 seconds

c) Highest point the object will reach is 360 m


d) Time taken to strike the ground would be 20+20 = 40 seconds
![[tex]v=u+at\\\Rightarrow v=0+0.9\times 2\times 20\\\Rightarrow v=36\ m/s](https://tex.z-dn.net/?f=%5Btex%5Dv%3Du%2Bat%5C%5C%5CRightarrow%20v%3D0%2B0.9%5Ctimes%202%5Ctimes%2020%5C%5C%5CRightarrow%20v%3D36%5C%20m%2Fs)
Acceleration will be taken as positive because the object is going down. Hence, the sign changes. 2 is multiplied because the expression is given in the form of 
e) The velocity with which the object strikes the ground will be 36 m/s
f) The speed will increase when the object has gone up and for 20 seconds and falls down for 20 seconds. The object speed will increase when it is coming down from its highest height.
<span>You have multiple confounding variables, you cannot accurately conclude the relationship between the manipulated and dependent variable because the other variables that are not controlled for could be the reason for seeing a certain change</span>