To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
Answer:
11.25moles of CO2
Explanation:
First, let us generate a balanced equation for the reaction of propane to produce CO2. This reaction called Combustion. It is a reaction in which propane burns in air (O2) to produce CO2 and H20. The equation is given below:
C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
1mole of C3H8 produced 3moles of CO2.
Therefore, 3.750 moles of C3H8 will produce = 3.750 x 3 = 11.25moles of CO2
Answer:
191.6 g of CaCl₂.
Explanation:
What is given?
Mass of HCl = 125.9 g.
Molar mass of CaCl₂ = 110.8 g/mol.
Molar mass of HCl = 36.4 g/mol.
Step-by-step solution:
First, we have to state the chemical equation. Ca(OH)₂ react with HCl to produce CaCl₂:

Now, let's convert 125.9 g of HCl to moles using the given molar mass (remember that the molar mass of a compound can be found using the periodic table). The conversion will look like this:

Let's find how many moles of CaCl₂ are being produced by 3.459 moles of HCl. You can see in the chemical equation that 2 moles of HCl reacted with excess Ca(OH)₂ produces 1 mol of CaCl₂, so we state a rule of three and the calculation is:

The final step is to find the mass of CaCl₂ using the molar mass of CaCl₂. This conversion will look like this:

The answer would be that we're producing a mass of 191.6 g of CaCl₂.
Rate = 3.37x10-3 M^-1 min-1 [A]^2 and the initial concentration of a is 0.122M.
A rate law indicates the rate of a chemical response depends on reactant concentration. For a response inclusive of the price regulation commonly has the form rate = ok[A]ⁿ, in which okay is a proportionality constant known as the fee regular and n is the order.
The charge of a chemical response is, perhaps, its maximum crucial asset because it dictates whether or not a reaction can arise all throughout an entire life. knowing the charge regulation, an expression concerning the price to the concentrations of reactants can assist a chemist to modify the response conditions to get an extra suitable rate.
half-life is the time taken for the radioactivity of a substance to fall to 1/2 its authentic cost whereas implies existence is the common life of all the nuclei of a particular risky atomic species.
Learn more about rate law here:-brainly.com/question/7694417
#SPJ4