94.6 g. You must use 94.6 g of 92.5 % H_2SO_4 to make 250 g of 35.0 % H_2SO_4.
We can use a version of the <em>dilution formula</em>
<em>m</em>_1<em>C</em>_1 = <em>m</em>_2<em>C</em>_2
where
<em>m</em> represents the mass and
<em>C</em> represents the percent concentrations
We can rearrange the formula to get
<em>m</em>_2= <em>m</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>m</em>_1 = 250 g; <em>C</em>_1 = 35.0 %
<em>m</em>_2 = ?; _____<em>C</em>_2 = 92.5 %
∴ <em>m</em>_2 = 250 g × (35.0 %/92.5 %) = 94.6 g
MgH2 + 2 H2O → Mg(OH)2 + 2 H2
Answer:
molarity of acid =0.0132 M
Explanation:
We are considering that the unknown acid is monoprotic. Let the acid is HA.
The reaction between NaOH and acid will be:

Thus one mole of acid will react with one mole of base.
The moles of base reacted = molarity of NaOH X volume of NaOH
The volume of NaOH used = Final burette reading - Initial reading
Volume of NaOH used = 22.50-0.55= 21.95 mL
Moles of NaOH = 0.1517X21.95=3.33 mmole
The moles of acid reacted = 3.33 mmole
The molarity of acid will be = 
C) a fundamental force would be gravity
It would form into NaCl because Na has a +1 charge while Cl has a -1 charge.