The cause for a molecular cloud forming fragments when it collapses is indicated correctly by option D. density variations from place to place grow larger as the cloud collapses.
Molecular cloud:
A molecular cloud, also known as a stellar nursery, is a specific kind of interstellar cloud, whose density and size allow the development of molecules, absorption nebulae, and H II regions. In contrast, some regions of the interstellar medium mostly consist of ionized gas.
Molecular clouds are cold, dense areas of space where stars form. The cloud collapses into a proto-star when the gravitational force pulling it in outweighs the internal pressure pushing it in.
When a molecular cloud collapses, it is observed that the density varies from place to place with the variation increasing with collapse. As a result, the collapse is characterized by fragmentation of the cloud.
Thus the correct option is: D. density variations from place to place grow larger as the cloud collapses.
Learn more about molecular clouds,
brainly.com/question/3459894
#SPJ4
Answer:
15 meters
Explanation:
The inicial energy of the ball is just potencial energy, and its value is:
E = m * g * h = m * g * 20,
where m is the ball mass, and g is the value of gravity.
In the moment that the ball strickes the ground, all potencial energy transformed into kinetic energy, and 25% of this energy is lost, so the total energy at this moment will be:
E' = 0.75 * E = 0.75 * m * g * 20 = 15*m*g
This kinetic energy will make the ball goes up again, and at the maximum height, all kinetic energy is transformed back into potencial energy.
So, as the mass and the gravity are constants, we can calculate the height the ball will reach:
E' = m*g*h = 15*m*g -> h = 15 meters
Answer:
The Moon revolves or moves around the Earth in a path called its orbit and rotates, or spins, in space.
Explanation: The Moon's movements cause the phases of the Moon and the Earth's ocean tides.