The main constituent of gallstones is cholesterol. Cholesterol may have a role in heart attacks and blood clot formation. Its elemental percentage composition is 83.87% C, 11.99% H, and 4.14% O. It has a molecular weight of 386.64 amu. Empirical formula is C₃H₄O₁ and Molecular formula is 7(C₃H₄O₁).
<h3>What is Empirical Formula ?</h3>
Empirical formula is the simplest whole number ratio of atoms present in given compound.
Element % Atomic mass Relative no. of atoms Simplest whole ratio
C 83.87 12
= 6.98
= 3
H 11.99 1
= 11.09
= 4
O 4.14 16
= 0.25
= 1
Thus the empirical formula is C₃H₄O₁.
<h3>How to find the Molecular formula of compound ?</h3>
Molecular formula = Empirical formula × n
n = 
= 
= 7
Molecular formula = Empirical formula × n
= 7 (C₃H₄O₁)
Thus from the above conclusion we can say that The main constituent of gallstones is cholesterol. Cholesterol may have a role in heart attacks and blood clot formation. Its elemental percentage composition is 83.87% C, 11.99% H, and 4.14% O. It has a molecular weight of 386.64 amu. Empirical formula is C₃H₄O₁ and Molecular formula is 7(C₃H₄O₁).
Learn more about the Empirical Formula here: brainly.com/question/1603500
#SPJ4
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Answer:
3. crystal habit and cleavage.
Explanation:
Crystal habit is a distinctive characteristic which is shown in its general shape, crystallographic forms, how developed each form is.
Cleavage is the ability of a mineral to break in smooth planes parallel to zones of weak bonding. Cleavage in three directions at right angles (90o). Cubic cleavage. Cleavage in three directions not at right angles (120o and 60o).
The correct answer is the last option. When <span>Zac releases the air from a balloon, it will expand to fill the room. It will not expand in the sense that molecules will be big but the molecules will be more spread out into the room and more air molecules will be present to fill the room.</span>