Answer: 2NOBr(g) ⇌ 2NO(g) + Br2(g)
Explanation: For volume changes in equillibrium, the following are to be taken into consideration:
- Volume changes have no effect on equillibrium system that contains solid or aqueous solutions.
- An increase in volume of an equilibrium system will shift to favor the direction that produces more moles of gas.
- A decrease in volume of an equilibrium system will shift to favor the direction that produces less moles of gas.
- Volume changes will have no effect on the equillibrium system if there is an equal number of moles on both sides of the reaction.
2NOBr(g) ⇌ 2NO(g) + Br2(g) is the equillibrium system because there are more moles of products,therefore an increase in the volume of the reaction will shift to the right and produce more moles of products. Also both reactants and products exist in the gaseous state and does not have equal number of moles.
<span>The ideal gas law.
PV=nRT
pressure x volume = moles x Faraday's constant x Temp Kelvin (C+273)
Original data
Pressure 1 atmosphere
Volume 1 liter
Temp 25C = 298K
New data
Volume 0.5 liter
pressure X
Temp 260C = 533K
P1v1T1 = P2v2T2
plug and chug.
(1)(1)(293) = (x)(0.5)(533)
Solve for X, which is the new pressure. </span>
The answer is A beautiful
Think of it as a balloon when you pump air into it it grows bigger but, if you put too much air into it what happens it pops because the pressure was too much for the balloon to withhold. That's the same with a basketball when you pump air into it the pressure pushing on the material increases. <span />