<span>There are four laws of thermodynamic which define and characterize the thermodynamic system at thermal equilibrium.
The laws of thermodynamics state that, in a heat engine, </span>all the heat energy from a source cannot be converted to mechanical energy.
Answer:
<em>The second ball has four times as much kinetic energy as the first ball.</em>
Explanation:
<u>Kinetic Energy
</u>
Is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
Two tennis balls have the same mass m and are served at speeds v1=30 m/s and v2=60 m/s.
The kinetic energy of the first ball is:



The kinetic energy of the second ball is:



Being m the same for both balls, the second ball has more kinetic energy than the first ball.
To find out how much, we find the ratio:

Simplifying:

The second ball has four times as much kinetic energy as the first ball.
I believe it would be weight. mass never changes.
Answer:
add 44m/s and 22m/s then multiply it by 11
Explanation: