Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k
Answer:
3000 hurs
Explanation: just divide 150000 by 50 and get 3000
The basic relationship between frequency and wavelength for light (which is an electromagnetic wave) is

where c is the speed of light, f the frequency and

the wavelength of the wave.
Using

and

, we can find the value of the frequency:
What is the difference between<span> a</span>size declarator<span> and a </span>subscript<span>? The </span>size declarator<span> is ... When writing a function that accepts a two-dimensional </span>array<span> as an argument, which </span>size declarator<span> must you provide in the parameter </span>for<span> the</span>array<span>? The second size ...</span>
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
Speed = Distance/Time
For light,
3 x 10^8 = d/t
t = d/(3 x 10^8) -1
For sound,
339 = d/(t + 30) -2
Putting value from 1 in 2.
d = 10^4 m(approx)