Answer:
Let the weight of the person be W and be located at a distance 'a' from the left scale as shown in the figure
Since the body is in equilibrium we can use equations of statics to analyse the problem.
Taking Sum of Moments about A we have

Taking Sum of Moments about B we have

Solving the above 2 equations for W and 'a' we get

Answer:
The capacitance is 1.75 nF
Explanation:
From the question we are given that
The inner radius is 
The outer radius is 
Length of the capacitor is 
The dielectric constant is 
The dielectric constant is 
Generally the capacitance of a capacitor can be mathematically represented as





Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr
Answer:
2700
Explanation:
because calculate the minute1=60×45=2700