The mass of 1.72 mol of magnesium fluoride is 107 grams.
To determine the mass of 1.72 mol of magnesium fluoride, we first need the chemical formula of magnesium fluoride. Magnesium forms a +2 ion (Mg+2) and fluoride forms a -1 ion (F-1). Since all compounds formed from ions have to be electrically neutral, we need 2 fluoride ions and 1 magnesium ion. Therefore, the formula for magnesium fluoride is MgF2.
Now we need to determine the molar mass of the compound from the molar mass values from the periodic table. Let's use a table to calculate this molar mass.
Molar mass of MgF2
Element Molar Mass (g/mol) Quantity Total (g/mol)
Mg 24.31 1 24.31
F 19.00 2 38.00
Total molar mass of MgF2 = 24.31 g/mol + 38.00 g/mol = 62.31 g/mol
This is the mass of one mole of the substance. If we have 1.72 mols of it, we multiply 1.72 by 62.31.
1.72 mol (62.31 g/mol) = 107 grams
We rounded to 107 to keep the correct number of significant digits in our answer.
The lattice energy of the compounds is distributed in the following decreasing order of magnitude: MgO > CaO > NaF > KCl.
<h3>KCl or NaF, which has a higher lattice energy?</h3>
The lattice energy increases with increasing charge and decreasing ion size.(Refer to Coulomb's Law.)MgF2 > MgO.Following that, we can examine NaF and KCl (both of which have 1+ and 1-charges), as well as atomic radii.NaF will have a larger LE than KCl since Na is smaller then K and F was smaller than Cl.
<h3>MgO or CaO, which has a larger lattice energy?</h3>
MGO is more difficult than CaO, hence.This is because "Mg" (two-plus) ions are smaller than "Ca" (two-plus) ions in size.MgO has higher lattice energy as a result.
To know more about compounds visit:
brainly.com/question/14117795
#SPJ4
I think it's Letter c.13 if I'm not mistaken
Answer:

Explanation:
It often helps to write the heat as if it were a reactant or a product in the thermochemical equation.
Then you can consider it to be 11018 "moles" of "kJ"
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32.00
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 8H₂O + 11 018 kJ
n/mol: 7280
1. Moles of O₂
The molar ratio is 25 mol O₂:11 018 kJ

2. Mass of O₂
