Answer:
8.99×10^-7m
Explanation:
The wavelength can be calculated using the expression below
E=hcλ
Where E= energy= 2.21 x 10^-19 J.
C= speed of light= 3x10^8 m/s
h= planks constant= 6.626 × 10^-34 m2 kg / s
E=hcλ
λ= E/(hc)
Substitute for the values
λ=( 2.21 x 10^-19 )/(6.626 × 10^-34 × 3x10^8 )
= 8.99×10^-7m
Answer:
a) 0.11
b)76.9
c) 8.8
d) 1.7*10^-4
Explanation:
Step 1: Data given
K = 1.3 * 10^-2 for the reaction N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 2: Formula of K
aA(g) + bB(g) ⇌ cC(g) + dD(g)
K = [C]^c *[D]^d / [A]^a * [B]^b
K = 1.3 * 10^-2 = [NH3]² / [H2]³*[N2]
Step 3:
a) 1/2N2 + 3/2H2(g) ⇌ NH3(g)
N2(g) + 3H2(g) ⇌ 2NH3
1/2N2 + 3/2H2(g) ⇌ NH3(g) =>K' =
K' = = 0.11
<em>b. 2NH3(g) ⇌ N2(g) + 3H2(g)</em>
N2(g) + 3H2(g) ⇌ 2NH3
2NH3(g) ⇌ N2(g) + 3H2(g) =>K' = 1/K
K' = 1/(1.3*10^-2) = 76.9
c. NH3(g) ⇌ 1/2 N2(g) + 3/2H2(g)
N2(g) + 3H2(g) ⇌ 2NH3
NH3(g) ⇌ 1/2 N2(g) + 3/2H2(g)
=>K' =
K' =
K' = 8.8
d. 2N2(g) + 6H2(g) ⇌ 4NH3(g)
N2(g) + 3H2(g) ⇌ 2NH3
2N2(g) + 6H2(g) ⇌ 4NH3(g)
K' = K²
K' = (1.3*10^-2)²
K' = 1.7 *10 ^-4
3 is the frequency of the wave